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Abstract—This is a review on G-networks, which are the generalization of the Jackson and
BCMP networks, for which the multi-dimensional stationary distribution of the network state
probabilities is also represented in product form. The G-networks primarily differ from the
Jackson and BCMP networks in that they additionally contain a flow of the so-called negative
customers and/or triggers. Negative customers and triggers are not served. When a negative
customer arrives at a network node, one or a batch of positive (ordinary) customers is killed
(annihilated, displaced), whereas a trigger displaces a positive customer from the node to some
other node. For applied mathematicians, G-networks are of great interest for extending the
multiplicative theory of queueing networks and for practical specialists in modeling computing
systems and networks and biophysical neural networks for solving pattern recognition and other
problems.

1. INTRODUCTION

A central place in queueing network theory belongs to networks admitting product form of the
joint stationary distribution of the number of customers at nodes. For the sake of brevity, such
networks are often referred to as multiplicative networks. The theory of multiplicative networks
takes its origin in [76], in which the multidimensional stationary distribution of a Markov process
describing the stochastic behavior of an open homogeneous exponential network with nodes of
infinite capacity was first expressed in product form. The network studied in [76] is now referred to
as the Jackson network in honor of its author. Subsequent weighty contributions to multiplicative
network theory were stimulated by the publication of [26] formulating the so-called BCMP theorem
(the abbreviation consists of the first letters of the names of its four authors) formulating the
product solution for a large class of open networks that are the generalization of the Jackson
network. Necessary conditions for a Jackson network to be expressed in product form are that all its
input flows must be Poisson and distributions of their service times must be exponential. For BCMP
networks, the second constraint may not always hold, but the service mechanisms (disciplines) at
nodes must be of a special type. Subsequent developments in the theory of multiplicative networks
resulted from different types of generalizations of the Jackson and BCMP networks concerned with,
for example, the dependence of input flows on the number of customers in the network, dependence
of probabilities of transitions between network nodes on the state of these nodes, constraints on
the number of customers in the network, bypassing of nodes, etc [10, 80, 82, 83]. The theory of
Jackson and BCMP networks and their generalizations are described in sufficient detail in many
Russian and foreign reviews and monographs [1, 2, 5, 12, 42, 63, 80].

An absolutely new class of open networks generalizing the Jackson and BCMP networks and
admitting product solution was introduced by E. Gelenbe [49, 50, 53] (see also [63]). These are
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networks containing, along with ordinary (positive) customers, additional Poisson flows of negative
customers and /or triggers. A negative customer differs from an ordinary (positive) customer in that
upon arrival at a network node it kills a positive customer if any at this node, thereby reducing
the number of positive customers at the node by one. Thereafter the negative customer quits
the network, receiving no service. A trigger, unlike a negative customer, does not kill a positive
customer, but instantaneously displaces him with a given probability from the present node to
some other node. Such a network is called the G-network (here G denotes the first letter in the
name, Gelenbe, of the author [49, 50, 53]).

As has been already mentioned, G-networks are multiplicative and the joint stationary distri-
bution of the number of customers at the network nodes is representable in product form. But to
find this distribution, we must solve a system of nonlinear algebraic equations for the intensities of
customer flows in the network—the main difference between a G-network and Jackson and BCMP
networks for which the system of equations for the intensities of flows in the network is linear.

In later works (e.g., [64]), Gelenbe investigated a more general case, namely, he introduced an
additional flow of signals that with given probabilities may be either negative customers or triggers.

The study of G-networks has been started only recently; the first papers on this topic appeared
in 1989 [49, 50] and are, in general, not related to analytical modeling of computing networks.

G-networks owe their appearance to analytical modeling of biophysical neural networks [49, 50],
which are characterized by pulse-like signals. These signals are generated after random time inter-
vals and their motion largely resemble the circulation of customers in a queueing network. Moreover,
a signal excitation at the adjacent neuron (network node) increases the neuron potential and is in-
terpreted as a positive customer, whereas signal suppression decreases the neutron potential by one
unit and can be regarded as a negative customer that reduces the neuron potential by one unit.

But, as has been found later, G-networks can be used in various applications in modeling com-
puter systems and networks (for example, flow control in computer networks, modeling the effect
of viruses in networks, etc.), production systems and networks, in solving problems of pattern
recognition, combinatorial optimization, etc. [21, 22, 47, 49-52, 55, 57-60, 61, 63, 65].

By way of illustration, let us examine a simple example [56] demonstrating the possibilities of
application of G-networks to flow control in a computer network (note that the BCMP theorem
cannot be applied to this example).

Let a computer network consist of an input queue (node I) and S subnetworks Ni,..., Ng,
which present alternative nonintersecting routes for packets. Packets are served in order of arrival
at node I and then routed to a subnetwork NN;.

The packets at a subnetwork N;, i = 1,5, are routed by two different mechanisms.

(I) Packets at the subnetworks Ny, ..., Ng are routed with fixed probabilities Pj,..., Pg. The
optimal values of the probabilities F;, ¢ = 1,5, are chosen by the minimal delivery time criterion
at the design stage of the computer network [6, 7].

(IT) The second routing method is based on the information about free buffer memory at a
subnetwork N;. This information is transformed into a control packet, which is sent to the input
queue I and ensures the immediate displacement of a packet from the queue I to a subnetwork N;
(this is an example of the signal-trigger effect used in G-networks).

Diverse applications of G-networks, in turn, stimulated their intensive studies reported in a
large number of papers (see, for example, review [14]) and dissertations [29, 66, 86]. Only a few
Russian publications [3, 9, 11, 28] are devoted to G-networks. Therefore, this review on G-networks
and their applications may serve as an incentive to applied mathematicians to investigate new
network models and provide practical specialists both in computer systems and networks and other
application fields with new analytical modeling tools.
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2. A NETWORK WITH NEGATIVE CUSTOMERS

Let us begin the study of G-networks with a simple case, in which the additional flow arriving at
the network is just a flow of negative customers. We refer to such a network as the base G-network.
Precisely the base G-network was first introduced and investigated by Gelenbe [49, 50, 53].

Let us consider an open queueing network with M single-server nodes of infinite buffer capacity.
A flow of positive (ordinary) customers of intensity )‘(J)rz‘ and a Poisson flow of negative customers of
intensity A; arrive from outside (node 0) at node 7. All input flows are assumed to be independent.
The service times of positive customers at node ¢ are distributed exponentially with parameter p;,
i = 1,M. A negative customer upon arrival at a network node containing at least one positive
customer instantaneously kills (annihilates, removes from the network) one positive customer (under
the assumption that the service time of positive customers is exponentially distributed; which
customer is killed is unimportant if we are interested only in queueing processes at nodes) and then
quits the network without receiving any service at the node. Consequently, only positive customers
exist at a server or wait in the queue at every network node. Therefore, in the sequel, in discussing
the service of positive customers, we sometimes refer to them simply as customers for brevity.

A positive customer, upon completion of service at node i, is jockeyed with probability p;; to
node j as a positive customer, or with probability p;; as a negative customer, or quits the network
M
with probability p,o =1 — > (p;; + pZ_J) to outside (node 0).
j=1
The stochastic behavior of our queueing network is described by a homogeneous Markov process
{X(t), t > 0} over the state set

X ={(k1,ko,...,kn), ki >0, i=1,M}. (2.1)
The state (ki, k2, ..., ky) denotes that at some instant there are ky (positive) customers at node 1,
ko customers at node 2, ..., and kj; customers at node M.
M M
Let us introduce a vector k = (ki, ks, ..., ka). Let us also take AJ = 3 Ad: and Ay = 2 Ay,
i=1 i=1

Note that )\Sr and )\ are the intensities of the total Poisson flows of positive and negative customers
arriving at the network from outside, respectively.

Finally, let us introduce two matrices PT and P~ with elements p;; and Pijy ©J = 1, M,
respectively. Furthermore, we take P = P+ P~. We assume that the matrix P is indecomposable.

We shall study the stationary operation mode of the network.

Let )\;F and \;, 7 = 1, M, denote the intensities of positive and negative customers in the
network, respectively. The intensities )\;r and A, are defined by the system of nonlinear equations

M
F +
A= Agi + Z qjHjPjis

j=1
M
j=1
where
a =N/ + ). (2.3)

Let p(k) denote the stationary probability of the state k.
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Theorem 1. For a G-network with negative customers, if there exists a unique positive solution
to the system of Egs. (2.2), (2.3) such that the condition

¢ <1, i=1,M, (2.4)

is satisfied, then the stationary distribution p(k) of the Markov process {X(t), t > 0} can be
represented in product form as

M
p(k) = [ [ p(k:), (2.5)
i=1
where
p(ki) = (1= q)qf, ki >0, (2.6)
foralli=1,M.

The proof of Theorem 1, like the proofs of all other theorems below, is carried out in several
stages. First we find the system of equilibrium equations for the Markov process describing the
G-network behavior. (For more complex G-network models, precisely this stage may prove tedious,
though it is not complicated in essence). Then substituting formulas (2.5) and (2.6) into the system
of equilibrium equations, we demonstrate that the substitution results in a system of identities. Fi-
nally, following, for example, the logic of the Foster theorem [44] and since the solution of the system
of equations in the form (2.5), (2.6) under condition (2.4) is positive and bounded, we find that the
solution thus obtained is the unique stationary distribution of the Markov process {X(t), ¢ > 0}.

Obviously, ¢; has a probabilistic meaning—the probability that node ¢ is not empty, or, since
the network contains only single-server nodes, the utilization coefficient for the server of node 1.

What finally remains is to examine the existence of a solution to the system of nonlinear
Egs. (2.2), (2.3). We shall study this question in detail in Section 5 for more general G-networks.

3. A G-NETWORK WITH NEGATIVE CUSTOMERS
AND BATCH REMOVAL OF POSITIVE CUSTOMERS

One of the subsequent generalizations of the G-network is the case in which a negative cus-
tomer may kill a batch of positive customers, where the batch size is random and defined by some
probability distribution. Such a model is studied in depth in [56].

First let us consider the base G-network. Using the service mechanism for positive customers
and laws as before, according to which a positive customer upon completion of service at node ¢
is jockeyed to node j with probability p;; as a positive customer, or with probability p;; as a
negative customer or quits the network with probability p;g, let us describe the behavior of negative
customers arriving at network nodes.

When a negative customer arrives at a node ¢ containing k; > B; positive customers, where B;
is an integer random variable, the number of customers at the node decreases by B; (B; positive
customers are instantaneously killed). If k; < B;, then the node i is completely emptied (i.e., all
positive customers at the node 7 at this instant are instantaneously killed). The random variable B;,
which actually determines the maximal size of the annihilated batch of positive customers at node ¢,
obeys an arbitrary discrete distribution law P{B; = m} = m,, m > 1.

The operation of a G-network with batch removal is also described by the homogeneous Markov
process {X(t), t > 0} with a state set of the type (2.1) and with the same physical interpretation
for the states of the process.
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The balance equations for flow intensities in the network stationary operation mode, from the
viewpoint of formal expression, are the same as for the base G-network, i.e., of the form (2.2)

M
M=+ aips
j=1
M
A=A D Gy, i=1,M, (3.1)
j=1
but here g; is defined differently, namely,
b
¢ = —7""———, 3.2)
YO fila) + (
where
o0
1— > mimz™
o) =

Obviously, the system of balance Egs. (3.1), (3.2) for the flow intensities in the network is also
nonlinear.

Let us assume that the substochastic matrix P™ + P~ is indecomposable.

Theorem 2. For a G-network with negative customers and batch removal of positive customers,
if there exists a unique positive solution (\}F,\7), i = 1,M, to the system of Egs. (3.1), (3.2)
such that q; < 1, then the stationary distribution p(k) of the Markov process {X(t), t > 0} is
representable in product form as

M
p(k) = [T p(k), (3.3)
=1
where
plki) = (1= g)g, ki >0, (3.4)

forall i =1,M, and q; is defined by formula (3.2).

Theorem 2 implies that g;, as for the base G-network, is the stationary probability that the
server of the node i is busy, i.e., ¢; is the utilization coefficient of the server of the node .

4. G-NETWORK WITH NEGATIVE CUSTOMERS AND TRIGGERS

As stated in the Introduction, the action of environment on the queueing process of positive
customers may affect not only negative customers, which simply kill one or more positive customers
at a node, but also triggers arriving from outside, whose action consists in instantaneously moving
a positive customer from one node to some other node. G-networks with negative customers and
triggers were initially studied in [64], then in [38, 39, 54], and in [73] under additional assumptions.

As in [63, 64], first let us study a network with M single-server nodes of infinite buffer capacity.
A Poisson flow of positive (ordinary) customers of intensity )\(')"Z- and an additional flow of signals,
which is also a Poisson flow of intensity A, arrive at a network node ¢. The service time of a
positive customer at node i, as in the models investigated earlier, is exponentially distributed with
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parameter u;. Upon completion of service, a positive customer at node ¢ is jockeyed to node j with
probability p;; as a positive customer, or with probability p;j as a signal, or quits the network with

M
probability p;o =1 — > (p;; +p;;)- Let P = P 4 P~, where, as before, the matrices P™ and P~
j=1
consist of the probabilities p;; and Pij» respectively. Thus, not only positive customers, but also
signals circulate in the network, where the matrix P controls the movement of positive customers

as well as signals in the network.

A signal arriving at an empty node (i.e., a node containing no positive customers) does not exert
any influence on the network and instantaneously quits the network. In the contrary case, i.e., if
node j is not empty, the following events may take place when a signal arrives at node j:

(1) The arriving signal instantaneously displaces a positive customer from node j to node s with
probability ¢;s and is called the trigger. Let () denote the matrix with elements g;.

M
(2) Or the signal with probability ¢jo = 1— > gjs acts like a negative customer and kills a batch

of positive customers at the node j (the batcﬁ removal procedure is described in Section 3). The
size B; of the killed batch is a random variable with probability distribution 7;,,, m > 1.

In certain papers (e.g., [74]), the concepts of a signal and a trigger are identically used. Clearly,
this is a merger of terms. But this fact must be kept in mind in reading papers on G-networks.

We assume that the matrices P and ) are indecomposable; this is essential for formulating the
main result. Physically, it implies that an arriving positive customer upon completion of service
(i.e., the positive customer that was not killed by a negative customer) necessarily quits the network.

The operation of a G-network with negative customers, triggers, and batch removal of positive
customers can also be described by a homogeneous Markov process {X(t), t > 0} with state
set (2.1). Here too, the states of the processes are physically interpreted as in Section 2.

As usual, let us examine the stationary operation mode of our queueing network.

Let )\;r and \;, i = 1, M, be the intensities of flows of positive customers and signals in the
network, respectively. Then the balance equations for the intensities )\;F and \; are

M
A=A+ D gy

M M
Py + ijsqsqsz-] + 3 A4

=1 s=1 =1
M
=1

where ¢; is defined by

At
qi = — Z, 5 (42)
A, (1 —qio) + A qiofi(qi) + i
and
1= Y mimg
filg)) = —==L
(i) -

Theorem 3. For a G-network with negative customers, triggers, and batch removal of posi-
tive customers, if there exists a unique positive solution ()\Z'-F,)\Z-_), i = 1,M, to the system of
Egs. (4.1), (4.2) such that q; < 1, then the stationary distribution p(k) of the process {X(t), t > 0}
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can be represented in product form as

M
p(k) = [ p(ks), (4.3)
i=1
where
plki) = (1= g)g, ki >0, (4.4)

for alli=1,M and q; is defined by formula (4.2).

As for the G-network models considered earlier, from Theorem 3 we find that g; is the stationary
probability that node ¢ is not empty, or, which is the same thing, ¢; is the utilization coefficient of
the server of the node i.

5. SOLUTION OF THE BALANCE EQUATIONS FOR FLOW INTENSITIES
AND STABILITY OF G-NETWORKS

The systems of balance equations for the flow intensities for all G-networks studied thus far are
nonlinear. Therefore, the key to determining the multidimensional stationary distribution of the
number of customers at network nodes (according to Theorems 1-3) is the study of the existence
of a unique positive solution for the system of Egs. (2.2), (2.3); (3.1), (3.2) and (4.1), (4.2). This
is not a trivial problem, and we now examine it in detail.

In [53], the existence and uniqueness of the unique positive solution of Egs. (2.2), (2.3) for flow
intensities is demonstrated for the base G-network with a special type of transition probability
matrix. In particular, a sufficient condition for the existence and uniqueness of a unique positive
solution of Egs. (2.2), (2.3) is shown to be the condition

M
i+ Ao > AT+ pph, i=1,M. (5.1)
j=1
A network for which condition (5.1) holds is said to be hyperstable.

An approach to solving a nonlinear system of balance equations for flow intensities of the
type (2.2), (2.3) for the general base G-network is developed in [64]. It is extended in [56] to
G-networks with signals and batch removal of positive customers. It is somewhat more general.
Here we briefly outline it, using the results and notation of Section 4.

The method developed in [56] for solving a nonlinear system of balance equations for flow
intensities is based on the Brouwer’s fixed-point theorem.

Theorem 4. If PT + Q is a semistochastic indecomposable matriz, then the solution ()\;r,)\;),
i =1, M, of the nonlinear system of Egs. (4.1) always exists.

Let us schematically outline the proof of this theorem. Strictly speaking, this scheme lies at the
base of the algorithm for solving the system of Eqs. (4.1).

First let us rewrite Egs. (4.1) in a slightly different form as

M M
+_y+ +o ot +
M =26+ DM g + YA hygj,
j=1 j=1

M
A=+ Y Mgy, i=T1, (5-2)
=1
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where

_ i b= i giofilai)
A;qiofilqi) + pi A qiofi(ai) + pa

gi

Introducing four vectors AT, A™, )\(')F , and Ay with coordinates )\j, Ai s )\(J{i, and A, respectively,
and a diagonal matrix G with diagonal elements g;, let us rewrite (5.1) as

NI - [GPT+ (I -G)Q) =X,
AT =TGP A

Hence we obtain

ATT =20 i[GP* + (I - Q"

n=0
(o]
AT =X =x1 Y [ePt + (1-6)Q"GP.
n=0
Let us introduce a vector y = A~ — Ay and a vector function

Fly)=Xj" i[GP+ + (I -G@)Q|"GP~.
n=0

Note that the function F(y) is expressed through the matrix G, which depends on A~. By the
Brouwer’s theorem, the equation y = F(y) has a fixed point y*. Precisely this fixed point is the
solution of the system of Egs. (5.2)

AT(Y) = A0+,

AT (") = I S (F(y") P
n=0

Computational aspects of solving nonlinear systems of balance equations for flow intensities for
certain G-network models are discussed in [45]. For the base G-network, an iterative algorithm
for computing the probabilities ¢; and concurrent verification of the network stability is developed.
Every iteration is shown to be of second-order complexity.

6. A G-NETWORK WITH RANDOM SIGNAL ACTIVATION TIME

In the previous sections, we have studied G-networks with signals (which could be negative
customers or triggers) whose action is manifested instantaneously, i.e., the activation time of every
signal is zero, and was, therefore, disregarded in the design of the G-network model.

In this section, we assume that a signal arriving at the network is activated not instantaneously,
but only after a random time. A similar network with single-server nodes (under general assump-
tions on service times for positive customers) is investigated in [34] through the quasi-reversibility
concept [90]. But the formulas derived in [34] for the product solution are erroneous. Below we
state the results of [3, 28] for a G-network with random signal delay for single-server nodes with
exponentially distributed service times for positive customers and Markov service for signals. These
results show that the product solution is of a different form than that of [34]. In [3, 28], it is also
shown that the product solution also holds for the general Markov service for positive customers
at nodes, but only in a symmetric network.
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Thus, let us once again consider an open queueing network with M nodes of infinite buffer
capacity. A Poisson flow of positive customers of intensity )\(')"i and a Poisson flow of signals of
intensity Ay, arrive from outside at node 7. All customer and signal flows are independent.

The probability that a positive customer is served at node i in time (¢,¢+ A) is u (k)A +o(A)
if there are k customers at instant ¢ at the node. A positive customer upon completion of service
at node 7 is jockeyed with probability p;rj to node j as a positive customer, or with probability Dy

as a signal, or quits the network (is jockeyed to node 0) with probability p;g = 1 — Azdjl(p;; + pij)-
j=
Every arriving signal is activated after a certain random time interval. Furthermore, the prob-
ability that a signal arriving at node i is activated in time (¢,¢ + A) is p; (n)A + o(A), provided
there are n unactivated signals at this node at instant ¢. Upon expiry of the activation time,
either a signal acts with probability q;; as a trigger and displaces one positive customer from
node ¢ to node j such that the positive customer remains positive,

or the signal acts with probability g;; once again as a trigger and displaces one positive customer

from node ¢ to node j such that the positive customer is transformed into a signal at node j,
M

or the signal acts with probability g0 = 1 — 21((];; + qZ;) as a negative customer, which, after
killing a positive customer at node i, quits the n]etwork.

The customer that is displaced from node i to node j (as a positive customer or signal) is not
served at node 1.

If, upon activation of a signal, there are no positive customers at the node, then the signal quits
the network without exerting any influence on the operation of the network as a whole.

Let us introduce four matrices P, P, QT, and Q~ with elements p;;, Dij» q;;, and ¢,
i,j = 1, M, respectively. Furthermore, let P = P + P~ and Q = Q1 + Q~. We assume that the
matrices P and () are indecomposable.

The stochastic behavior of our G-network is described by the homogeneous Markov process
{X(t), t > 0} over the state set

X = {((kr,m), (ka,ma), ..., (kar,mar)), b >0, s >0, i =T,M }. (6.1)
The state ((k1,n1), (k2,n2),...,(kam,nar)) denotes that at a certain instant there are k; positive
customers and n; (unactivated) signals at node 1, ko customers and ny signals at node 2, ..., and

kas customers and njs signals at node M.

Let us introduce two vectors k = (ki, ka,...,ky) and n = (ny,na,...,ny), and take (k,n) =
((kh nl)v (k27 712), SRR (kMa 7’LM))

M M
Let A\J = 3 Af and A\; = 3 Ay;; note that A\J and )\ are the intensities of the total Poisson
i=1 i=1

flows of positive customers and signals arriving at the network from outside, respectively.

As before, let us study the stationary operation mode of the queueing network. Let p(k,n)
denote the stationary probability of the state (k,n).

6.1. Single-Server Nodes

We assume that the service times of customers at node i are exponentially distributed with
parameter u;r. Then

il (ki) = u(k)pf, i=1,M. (6.2)
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The intensities )\;F and \;, 7 =1, M, of flows of positive customers and signals in the network

are determined from the following system of nonlinear equations:

M
N =G (A )
j=1

M
AS =g+ D g (pr}ﬁ)\}qﬁ), i=1,M, (6.3)
j=1

where ¢; = A}/ ()\i_ + ui_).
Let us also take
pi () =X /ny (49),

M M
Ao = ainipio+ Y i) qo.
=1 i=1

Note that the equality
M
Ao+ A7 =T+ (6.4)
i=1

holds and can be used to check computations in solving the system of Egs. (6.3).

Theorem 5. For a G-network with random signal delay, if equality (6.2) holds and the conditions

=

oo My
A <A+ Gi=) [ri() <oo, i=
n;=0 j=1

I3, (6.5)

are satisfied, then the stationary distribution p(k,n) of the Markov process {X (t), t > 0} is repre-
sentable in product form as

M
p(k,n) = [[ p(ki,ne), i=1,M, (6.6)
i=1
where
ng 0
p(kini) = (1 —a)a "G ] o7 (G), kim0, i=1M, and [[=1 (6.7)
J=1 J=1

Note that here g; is the stationary probability that node ¢ contains at least one positive customer.

6.2. Symmetric G-Networks

Let us consider the G-network described above for which

Py =45, Dpij=dj Pio= g0, 4,j=1,M. (6.8)
Such a G-network is said to be symmetric.
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The intensities of flows of positive customers and signals )\j and \;, 7,7 = 1, M, are defined by
the system of equations

M

+ _\+ +,+

Ai _)‘Oi+z)‘j D
J=1

M
)\z_ :)‘(;i"i_z)\jpj_i? i,j=1,M, (69)
1

j:
which, unlike for the G-networks considered earlier, is linear. Moreover, we take
M
Ao = Z )\j Pio-
i=1

The equality
M
Ao+ D A7 =M + A, (6.10)
i=1
holds and is identical to relation (6.3) derived for single-server nodes, but the intensities of flows of

customers and signals are defined by different systems of equations.
In what follows, we take ¢;(j) = A\ /(A; + ut(j)).

Theorem 6. For a G-network with signal delay, if relation (6.8) holds and the conditions

L

=

oo ki oo n;
Fr=Y JlaG) <o, Gi=> I[ri(j) <oco, i=T1,M, (6.11)

k=0 j=1 ni=0j=1

are satisfied, then the stationary distribution p(k,n) of the Markov process {X (t), t > 0} is repre-
sentable in product form as

M
p(k,n) = H p(ki, ni), (6.12)
=1
where
k; n;
p(ki,ni) = F'GT [ @) [T o (O, kivmg >0, i=T1,M. (6.13)
j=1 =1

6.3. Discussion of the Results

In G-networks described in Sections 6.1 and 6.2, the service is partially (only for signals) or
completely (both for positive customers and signals) is assumed to be Markovian under which the
service intensities u; (k;) at node i for positive customers and p; (n;) for signals depend on the
number k; of customers and n; signals at node i, respectively. This assumption is rather general
and is sufficient in the sense that, defining the intensities u; (k;) and u; (n;) by different expressions,
we can determine different service mechanisms as particular cases.

Service of signals. Let us study a few concrete signal service (activation) mechanisms.

Service of signals without waiting. Let a signal arriving at node i, ¢ = 1, M, be activated
after a random time having an exponential distribution with parameter p, , irrespective of other
(unactivated) signals at the node.

AUTOMATION AND REMOTE CONTROL Vol. 64 No.5 2003



G-NETWORKS 725

In reality, such an activation mechanism for signals at node 7 is equivalent to service of signals
on an infinite number of identical servers, where every server functions independently of others,
and the service time at any server is exponentially distributed with parameter p; , ¢ =1, M.

Service of signals with waiting. An extension of this signal activation mechanism is the service
of signals at node ¢ with waiting at m; identical servers with a common buffer of infinite capacity.
Assuming that the service time at any server is exponentially distributed with parameter p,; , we
obtain u; (n;) = p; min(n;,m; ), i = 1, M. Such a service mechanism presupposes that signals
may wait for service at the buffer.

Service of impatient signals. Let us assume that the maximal sojourn time at node ¢ for
a signal (only for servers while serving without waiting in the queue or for servers and queue
while serving with waiting) is bounded by a random variable having an exponential distribution
with parameter v, , i = 1, M. A signal, upon expiry of this duration, instantaneously quits the
node ¢ and its further behavior obeys the same laws that govern signals that receive service. Such
a service mechanism for signals is called the service of “impatient” customers. Then, for ser-
vice without waiting we obtain p; (n;) = (u; + 7; )ni, and for service with waiting, p; (n;) =
w; min(ng,m; )+, ng, i =1, M.

Service of positive customers. This problem under Markov service for positive customers has
been solved only for a symmetric network. In analogy with what has been said about signal service,
we examine three cases.

Service of positive customers without waiting. Let us assume that node ¢ has an infinite number
of identical servers for serving positive customers, and the service at every server is exponentially
distributed with parameter p;, i = 1, M. In this case, p; (k;) = p ki, i =1, M.

Service with waiting for positive customers. If the number of servers at node ¢ for serving positive
customers is finite and equal to 'm:r and the service time at every server is exponentially distributed
with parameter g, then i (k;) = pi min(k;,m;), i =1, M.

Service of impatient positive customers. Let the maximal sojourn time at node ¢ for a positive
customer be bounded by a random variable, which is exponentially distributed with parameter 'y;r .
Then a customer (at a server or in the queue) for which this duration has expired quits the node 4,
and the further route of this impatient customer is determined by the same scheme as for a positive
customer that has been successfully served at node i. In this case, u; (k;) = p” min(k;, m;) +~; ki,
mj' <oo,i=1,M.

7. G-NETWORKS WITH SEVERAL CLASSES
OF POSITIVE CUSTOMERS AND SIGNALS

Generalizations of G-networks to the case of several classes of positive and negative customers
and signals are described in many papers [34, 35, 38, 39, 46, 48, 57, 62, 64, 74, 84].

In [48, 57, 64], the base G-network is extended to the case of several classes of positive customers
under the assumption that the number of classes of both types of customers is identical. Each of
these papers describes different variants for the effect of negative customers with their types. In [64],
negative customers of a fixed class are assumed to affect only positive customers of the same class.
In [57], the positive customer is chosen at random, i.e., if a negative customer arrives at a node 4
containing k; > 0 positive customers (with no regard for their type), then a positive customer of the
class c is killed with probability ke;/k;. In [48], a G-network with different disciplines (FIFO (first-
in-first-out), PS (processor-sharing), and LIFO/PR (last-in-first-out with preemptive resumption))
is investigated. A positive customer is chosen “for slaughter” according to the service mechanism
defined for the node. Moreover, a negative customer of the class m at node ¢ may kill a positive
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customer of the class k with probability K;,,x. In [62], the results of [48] are extended to the case
in which there are also several classes of triggers.

We now briefly state the main results of [62], in which a somewhat simplified analog of the
BCMP theorem is demonstrated for G-networks with FIFO, PS, and LIFO /PR service mechanisms
at single-server nodes (types of nodes are expressed in the terminology of the BCMP theorem).

For the sake of brevity of presentation, we shall not state the complete description of the
G-network and use the material of previous sections wherever possible.

Let us consider a queueing network consisting of M single-server nodes of infinite buffer capacity.
R Poisson flows of positive customers of intensity /\Srl.k, i=1,M, k=1,R, and S Poisson flows of
signals of intensity Ay, @ = 1, M, m = 1,8 arrive at the network from outside. All flows arriving
at the network are independent.

A positive customer upon completion of service at a network node may change his class and
node type, or may be converted into a signal, or quit the network.

A signal arriving at a nonempty node chooses a positive customer at the node as a “target”
(according to the service discipline at the node). A signal arriving at an empty node quits the
network without exerting any action on the network.

A signal of the class m, after choosing a positive customer of the class k, is activated with
probability K, as a trigger and displaces the positive customer to node ¢, and such a displacement
does not take place with additional probability 1 — Kj,,,. After the attempts to displace the target
customer, the signal vanishes.

A positive customer of the class k, upon completion of service at node i, is jockeyed with
probability p;rj,kl to node k as a positive customer of the class [, or with probability Dijkm 8S a
signal of the class m, or quits the network with probability

M R M S
piko =1=2 > Phw =2 2 Py 1=LM, k=LR (7.1)
j=11=1 j=1m=1

The service times of a positive customer of the class k at node i of any type are exponentially
distributed with parameter p;g.

We assume that the G-network satisfies the following properties.
Property 1. Nodes of type 1 (under the FIFO discipline) satisfy the condition

S
fiw + Y KimkAgim = ¢y k=1,R. (7.2)

m=1

Property 2. Node i of type 1 and a signal of the class m are such that

M R
Zzpj_i,lm > 0’

j=11=1
and the condition
Kima = imb; 1= 17 M7 m = L—Ra (73)

is satisfied for any a,b = 1, R. This condition implies that a trigger signal of the class m in its
attempt to displace a positive customer from some node does not “know” the type of the customer,
i.e., the signal does not distinguish positive customers by their type.

Property 3. For a node of type 2, the probability that a positive customer is chosen as a target
for slaughter by the negative customer arriving at the node is 1/¢, provided there are ¢ customers
(without regard for their type) at the node.
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Note that conditions (7.2) and (7.3) for a node of type 1 can be replaced by a more restrictive
condition of the type

Hia = Hib, Kima = Dgmb, 1= ]-7 M7
m=185, ab=1R.

The stochastic behavior of the G-network with several classes of positive customers and signals
is described by the homogeneous Markov process {X(t) = (Xi(t),...,Xwm(t)), t > 0}, where
the component X;(¢) describes the state of the node i at instant t. The state set of the process
{X(t), t > 0} is of the form

X = {(Xl,...,XM) :
X = (@i, ... ,:cm-‘zv‘), ji=1,R, i=1,M, for nodes of type 1, 4;
x; = (zi1,...,xig), k>0, i=1,M, k=1,R}, for nodes of type 2.
Here x; is the state of the node i at some instant ¢: for nodes of types 2 and 4, the component z; ;
of the vector x; = (21, ..., ki7|xi|) shows the class of the customer waiting at the jth place in queue
at node 7 (the order in the queue is determined by the FIFO and LIFO disciplines, respectively),

and |z;| is the number of customers at node ¢ without regard for their class. For a node of type 2,
we have x; = (z1,...,z;r) and its component x;; determines the number of customers at node 4

without regard for their classes.
Let p(k) denote the stationary probability of the state k.

Theorem 7. Let properties 1-3 hold for a G-network with several classes of positive customers
and signals. Then, if the system of nonlinear equations

+
o Ao + Aik
qik = 5 s
ik + 22 Kimk (A + Aiz)
m=1
M R M R M
+ _ +
)\ik - Z Zp]z,lkuﬂqﬂ + Z Z Z Z Z MJIQle]h meththpm sk
Jj=1li=1 j=11=1 h=1m=1s=1
M R
ZZ jzlmuﬂqﬂ’ i=1,M, k=1R, (7.4)

R

has a solution such that q; > 0 for every pair i,k and . q < 1 for every node i, then the
k=1

stationary distribution p(k) of the Markov process {X(t), t > 0} is expressed in product form as

M
=G [ o) (7.5)
i1

Moreover, g(x;) depends on the node type and takes the form

|4

9(x;) = H iz, for nodes of type 1, (7.6)
h=1
(i)
g9(x;) = |z;|! H ——=—— for nodes of type 2, (7.7)
k=1 Tik:
|4
9(x;) = H iz, for nodes of type 4, (7.8)
h=1

and G is the normalization constant.
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R
Note that the conditions ¢;; > 0 and Y ¢;; < 1 guarantee the existence of a stationary operation
k=1

mode for the network.

The proof of Theorem 8 is based on the logic described in Section 2, but the proof stages for
Theorem 8 are rather cumbersome.

8. OTHER MODELS AND METHODS OF ANALYSIS OF G-NETWORKS

The main G-network model and its generalization due to the introduction of batch removal of
positive customers and triggers for displacing positive customers to other nodes, including sev-
eral classes of positive customers and signals, are investigated largely by E. Gelenbe or in his
joint papers with coauthors. These models and works are the main models and works concerned
with G-networks. But in the literature there are works of other authors devoted to different modifi-
cations and refinements of the main G-network models and development of new methods of analysis
of G-networks. Below we outline these works, using the notation introduced in the previous sections.

A base G-network in which a negative customer upon arrival at an empty node remains at the
node is investigated in [32]. Therefore, the queue length at the node may become negative. A
sufficient condition for the existence of an invariant measure p of the Markov process describing
the network, as shown in [32], is the existence of a positive solution to the balance equations

M M
Giti + Y G5 + Gidg = Y GiHiph + My, i =1, M, (8.1)
j=1 J=1
for the unknowns ¢;, ¢ = 1, M. If this condition is satisfied, the invariant measure p can be

represented in product form as

M
p) = [[a, kez™. (8.2)
=1

By the assumption that the queue length may be negative, the states k of the set ZM may also
take any negative integral values. Therefore, the invariant measure (8.2) cannot be normalized.
This problem is solved in [32] by introducing lower and upper bounds for the queue length at every
node and modifying the transition probabilities such that these bounds are not violated.

In [73, 74], admitting that the queue length may take negative values for the base G-network,
the service intensities and transition probabilities are assumed to depend on the network states,
whereas batch arrival of negative customers is assumed in [75].

In many papers, as has been already mentioned, the concept of a signal is identified with the
concept of a trigger in the sense as introduced by Gelenbe in [54, 56]. For example, in the G-network
studied in [74], the so-called effective signals of type 0 play the role of a trigger. The concepts of a
signal and a trigger are fused together to some extent in [34, 35, 38—41]. In these papers, signals
are assumed to circulate in a network.

In [34], signal delay (service, activation in the sense of Section 6) at a node for a random time is
introduced for G-networks with several classes of positive customers and trigger signals. Positive
customers and signals are routed along the network according to the description given in Section 6
(of course, with due regard for several classes of positive customers). The service time for every
type of positive customers is distributed either exponentially or according to an arbitrary law, but
only for special symmetric service disciplines (e.g., processor sharing and LCFS/PR disciplines).
The network is investigated using the two-stage approach of [38] for the base G-network. In the
first stage, an isolated node is shown to satisfy the quasi-reversibility condition (for an isolated
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node in equilibrium mode, future arrivals of positive customers and signals, the current network
state and the past processes of departures of positive customers and signals from a node must be
independent). In the second stage, the approach of [90] is applied to extend the results obtained
for isolated nodes to the network as a whole. For the stationary distribution of probabilities of the
network states that coincide with the states of the set X (6.1), a product form is derived, but, as
noted in Section 6, formula (3) in [34] for marginal distributions of the states of network nodes is
not correct. (Probably, the error is unimportant and can be corrected).

n [40], the results obtained in [34] for a G-network with instantaneous signal activation are
extended to networks in which the transition probabilities for positive customers and signals depend
on the network prehistory. The network is studied by the approach of [34, 38]. Two cases are
examined. In case I, for a customer of a given type that quits the node upon completion of service,
his transition probability is assumed to depend on the time spent on his service due to service
interruption as consequence of arrival of a signal at the node. In case II, the transition probability
of a positive customer that has been served at a node or is displaced to another node by a newly
arrived signal depends on the number of service interruptions by signals. In [40], the stationary
joint distribution of the number of customers at network nodes is expressed in product form.

In [11], an approach based on the quasi-reversibility concept [80] is applied to study the base
G-network with bypasses for nodes. In [11], a positive customer jockeyed to node ¢ with probabil-
ity fi(k;), where k; is the number of positive customers at node i, joins the queue at this node, and
with additional probability 1 — f;(k;) is assumed to have been served at this node and leave the
node. Below we state the main result of [11].

The operation of a G-network with bypasses is described by a homogeneous Markov process
{X(t) = (X1(t),...,Xnm(t)), t > 0} over the state set X = Xy, xXy X ... X Xy, where &; =
{0,1,2,...}if fi(k;) >0, k; = 0,1,..., and X; = {0,1,2,... n;} if fi(k;) > 0, k; = 0,n; — 1, and
fi(n;) =0 for some n; > 1,i=1,M.

The equations for the intensities of flows of positive and negative customers in the network are
the same as for the base G-network without bypasses, namely,

M
NE= G D 4
j=1
M
A=A+ Y qipipy, i=1,M, (8.3)
j=1
where
4 = N/ + ). (8.4)

Theorem 8. If there exists a positive solution (A, )\;), i = 1, M, to the system of Egs. (8.3),
(8.4) such that the condition

ki
ZH fln_l oo, 1=1,M,
k;eX; n=1

is satisfied, then the Markov process {X(t) = (X1(t),..., Xm(t)), t > 0} is ergodic and its station-
ary distribution p(k) is representable in product form as

M
=[Ipik:), kex, (8.5)
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where

k;
pi(ki) = pi(0) [[ @sfitn—1), ki >0, i=T1M, (8.6)
n=1

q; is defined by formula (8.4), and
~1

ki
pi0)= | > [lafin-1| , i=1M. (8.7)
n=1

The G-network investigated in [9] is a combination of two nonintersecting subnetworks: a base
G-network and a network with bypasses. Two cases are distinguished for the network with bypasses:
exponential time of service at nodes under the FCFS discipline or general service time distribution
under the FCFS/PR discipline. The stationary probability distribution for the network states is
expressed in product form for both cases. This distribution under the FCFS/PR discipline depends
only on the first moments of service time at the network nodes.

The so-called “network” Markov process describing the stochastic behavior of a large class of
queueing networks, including particular networks with negative customers (triggers, signals), is
investigated in [37]. The main result of [37] is the necessary and sufficient conditions for studying
isolated nodes and expressing the stationary distribution of the network as a whole in product form
through the stationary state distributions of nodes. This result in effect determines the procedure
of derivation of the product-form stationary distribution (if it exists) for the network.

A rather general Markov model, the “string” network, in which the effect of negative customers
(triggers, signals) underlies the design of the respective Markov process, is studied in [88]. The state
of the Markov process describing such a network is defined by a vector of the number of customers
at network nodes (several types of customers is also possible), and the transition intensities of
the process include the possibility for choosing a set of vectors defining states in which changes
take place and vectors defining positive or negative increments of components of the vector set.
Such a model includes many of the network models described above as particular cases. The
stationary distribution of the “string” network is determined in [88]. A key point for finding
the stationary distribution is the traffic equation containing transition intensities of the “string”
network. Sufficient conditions for the existence of a solution to traffic equations are formulated and
the relationship of traffic equations with partial balance equations is derived in [88].

9. G-NETWORKS WITH CATASTROPHES

Let us examine one more type of G-networks—G-networks with catastrophes. They differ from
the base G-network described in Section 2 in the following. A Poisson flow of catastrophes of
intensity Ag;, i = 1, M, arrive at node i from outside. Upon arrival of a catastrophe at node 4
from outside or another node, all positive customers at the node are killed (unlike in the case of a
negative customer, which kills only one positive customer). All other assumptions stipulated for the
base G-network also hold for a G-network with catastrophes. Such a G-network with catastrophes
is studied in [35]; here we only state its main results.

Let us study the stationary operation mode of the queueing network. The balance equations for
the intensities of flows of positive customers and catastrophes in the network are of the form

M
F oy +
A=A T Z qjHjPj;s

j=1
M
=1
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where

7>\EL+)\Z+Mi—\/()\;F+)\¢_+Mi)2—4)\fm

o 9:2)

i
Note that Egs. (9.1) coincide in form with Egs. (2.2) for the base G-network, but the stationary
utilization factor g; for the server i is defined by another formula.

Theorem 9. For a G-network with catastrophes, if there exists a solution to the nonlinear system
of Egs. (9.1), (9.2) such that A\; > 0 or A\, = 0 and \J < p;, i = 1,M, then the stationary
probability distribution for the network states is representable in product form as

M

p(k) = [](1 - a)dl. (9.3)

i=1

The proof of Theorem 9 is based on the approach developed in [38].

10. TWO-PHASE G-SYSTEMS
10.1. Two-Phase G-Systems with Negative Customers

All results pertaining to G-networks primarily consist in determining the product form for the
stationary probability distribution of the network states. Naturally, other performance indexes of
a network or its nodes are also of interest. In particular, an important network performance index
is the response or sojourn time distribution for a customer in the network. It is not easy to find
this characteristic. This problem in general formulation has thus far not been solved either for
the Jackson networks or G-networks. Therefore, the results found even for narrow particular cases
of G-networks are of great interest. Below we outline the results obtained for the response time
distribution in [71] for a tandem G-network, which we refer to as the two-phase G-system.

The case of M = 2, pf2 =1 and p{o =1 is investigated in [71] in terms of the base G-network
under the assumption that customers are served in every phase (at every node) according to the
FCFS discipline. To analyze the response time distribution, it is also important to know precisely
which customer is killed by an arriving negative customer. A negative customer, upon arrival in
any service phase, is assumed to kill (displaces to outside) the customer at the queue end. In foreign
literature, this procedure is known as the RCE (removal of the customer at the end) procedure.

As a consequence of Theorem 1 in [71], we obtain

A _ M tma

Q= —, q2 = — )
)‘0,1 + )\072 + 2

and if the condition ¢; < 1, ¢ = 1, 2, is satisfied, then the stationary probability distribution for the
states of the two-phase G-system takes of the form

plki ko) = (1 —q1)(1 — q2)at ¢, k1, ko > 0. (10.1)

Since the service time at every server is exponentially distributed, the stationary distribution
of the number of customers in phases does not depend on which customer in the queue is killed.
But this fact is quite important in analyzing the sojourn (response) time distribution. Indeed, the
sojourn time of a labelled customer depends on the arrival of future positive customers, since they
are allocated in the queue behind the labelled customer and precisely they are killed according to
the RCE procedure by the negative customers arriving at this phase.
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Let W*(s) denote the Laplace—Stieltjes transform of the total sojourn time of a positive customer
in the two-phase G-system and the probability that this customer is not killed. Then

W(s) = (1—qi)(1 - qz>§‘—1iy1<s>c<q2, 0,41(s), ), (10.2)

where G satisfies the functional equation (for any z, y, 2z, and s for which |z| < 1, |y| < 1, |2| < 1,
and R(s) > 0)

AT 1z + Ay 2
RG = | \T L e LYl S o R
( 0,1+M1 > y (.le, ’Z’S)—I_(l—y)(l—Z)’
— = )‘(J)r,1 - (J)r,2 - z
R=s5+ X Agam + p2(l —x) - - Ao — v Ao2¥ — /1‘1;7

and y1(s) is the least root of the quadratic equation
Moay? = (y+ A1+ m(l—aq)y + A, =0

The probability that a customer is not killed is

W) = = — 2 (10.3)
)\071 + M1 )\072 + H2

i.e., is representable in product form.

For the particular case of )\(J{, 9 = Ag2 = 0, the sojourn times of a positive customer in different
ph‘ases are shown to be independent in [71].

10.2. Two-Phase G-Systems with Catastrophes

In the two-phase system with catastrophes investigated in [68], the first phase consists of one
server with infinite buffer and the second consists of one server with no waiting room. Its input
is a Markov flow of customers. Service times have a phase-type distribution for the first server
and arbitrary for the second server. If the second server is busy at the instant of completion
of service of a customer in the first phase, then the customer that has been served at the first
server remains at the server, thereby blocking it till the second server becomes free. A Markov
flow of catastrophes also arrives at this system. When a disaster arrives, the system is completely
emptied. In [68], the Markov renewal process describing the stochastic behavior of the two-phase
system with catastrophes have been introduced and expressions have been derived in terms of
generating functions for the stationary distribution of the Markov chain imbedded at customer
departure instants. The stationary distribution of the states of the system for arbitrary instants
has also been determined and the departure flow has been studied.

11. SINGLE-PHASE G-SYSTEMS

The study of queueing systems with negative customers or G-systems as we shall refer to them
(G-queues in English terminology [58]) was begun almost concurrently with G-networks. We now
briefly outline the main trends of research on G-systems. Apparently, G-systems do not come under
the scope of our review, but this is not true. The results of certain individual queueing systems may,
for example, be required as models for the operation of isolated nodes in an approximate analysis
of G-networks in analogy with the usual queueing systems, in particular, by the decomposition
method with regard for one or, possibly, two distribution moments describing customer flows and
service times (see, for example, [1]).
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11.1. Single-Phase G-Systems with Negative Customers

A single-server queueing system with infinite buffer and negative customers was first studied by
Gelenbe et al. [60], introducing an additional flow of negative arrivals under broad assumptions on
the input flow of positive customers and their service times. Positive customers are served according
to the FCFS discipline and two strategies are introduced for negative arrivals for choosing a positive
customer for removal from the system:

(1) the RCE strategy, i,e., removal of the customer at the end (see Section 10) and

(2) the RCH strategy (removal of the customer at the head).

According to [60], a condition for the existence of a stationary operation mode for this queueing
system depends, not on the intensities of input flow and service, as is the case for an ordinary
queueing system without negative customers, but on the distributions of inter-arrival intervals and
service times of customers.

In [70], the Laplace-Stieltjes transform for the joint sojourn time distribution for a positive
customer and the probability that a positive customer is not killed are derived for M/M/1/c0
systems under FCFS or LCFS service discipline and systems with negative customers under RCE
and RCH strategies. The queueing process for the M/G/1/0co system was investigated by these
authors in [72] for the combinations FCFS-RCE, FCES-RCH, and LCFS-RCH of service disci-
plines and removal strategies. (Note that the combinations FCFS-RCE and LCFS-RCH give the
same results in analyzing the queueing process). For all these three cases, the generating functions
for the stationary queue distribution are derived. It must be mentioned that these generating
functions differ if the service times of positive customers are not exponentially distributed. For
example, while a first-order Fredholm integral equation is to be solved for determining the generat-
ing function for the FCFS-RCE combination, the generating function @Q(z) for the queue length in
the M/G/1/00/ FCFS-RCH system is expressed in explicit form closely resembling the Pollaczek—
Khinchin formula:

ATHATA = 2)BAT(1—2)+ A7)
AT+ ATBATA —2)+ A —2) ]

Q(z) = (1—p)

where AT and A\~ are the intensities of arrivals of positive and negative customers, respectively,
p=A"(1—p3(A7))/A", and B(s) is the Laplace-Stieltjes transform for the service times of positive
customers.

In [33], the stationary queue length distribution for a multi-server MM CPP/GE/c/oco system is
determined, in which positive and negative customers arrive in batch Poisson flows with a geometric
distribution for the batch size and controlled Markov processes with a finite state set. The sojourn
time for a positive customer in a similar system under RCE and RCH strategies is determined [69].
It is the generalization of the results of [70].

An M/G/1/o00 system with negative customers of a slightly different type than that of [60] and
other cited papers is investigated in [27] under the assumption that a negative customer acts not
instantaneously upon arrival, but only at the instants of completion of service of positive customers.
The queueing process at service completion and arbitrary instants is studied in [27].

11.2. Single-Phase G-Systems with Catastrophes

In this section, we study a queueing system with catastrophes or clearing. These concepts
are defined in Section 9 and require no explanation. Generally speaking, (complete or partial)
clearing systems were investigated long ago (see, for example, [87, 89] or the comparatively recent
paper [81]) in connection with optimization of systems in which clearing could be controlled without
any reference to negative customers.
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The concept of a negative customer gave a new impulse to the study of G-systems with catas-
trophes. For example, a random process—a job that an M/G/1/oco system with catastrophes must
implement at a certain instant—is investigated in [78], in which the Pollaczek—Khinchin formula is
generalized to the stationary case. In [30], the model of [78] is extended to a system with removal
of a certain number of works; here removal need not necessarily be associated with an integral
number of customers. The models of [30, 78] are refined in [79, 31]. A queueing process for the
BMAP/SM/1/N system with a Markov flow of catastrophes and finite buffer is investigated in [41].

11.8. G-Systems with Retrial Customers

A large number of papers on G-systems deal with retrial models [13-20, 23-25, 66, 67].

There are models in which positive customers are served at a bufferless server. A customer
arriving at the system when the server is busy joins a batch of retrial customers, called the orbit.
Every customer in the orbit makes an attempt after certain exponentially distributed time intervals
to receive service and the process continues till the retrial customer finds an idle server. In principle,
such a model can be interpreted as a two-phase system (two-node network), in which phase 1 consists
of a bufferless server and phase 2 consists of an infinite number of servers. Furthermore, in phase 2
servers with repeated service can be blocked (such type of blocking for a two-phase system with
single-server nodes is investigated, for example, in [4]). Negative customers in such models may
only kill a customer in the orbit or at a server.

In the M/M/1/0 system with repeated attempts and a Poisson flow of negative arrivals studied
in [15, 16], a negative customer only kills the customers in the orbit under the assumption that
the interval between repeated attempts from the orbit is exponentially distributed with parame-
ter a(1 — dpj) + jv if there are j retrial customers in the orbit, where do; is the Kronecker delta.
This is the so-called linear service discipline for retrial customers. In [15, 16], this G-system is
studied in-depth and several important characteristics, namely, stationary distribution and facto-
rial moments of the number of customers in the orbit, distribution of sojourn time on the orbit
under the FCFS-RCE discipline, busy period, and the stationary distribution of the Markov chain
imbedded at departure instants, are determined.

In [17, 20], an M/G/1/0 system with repeated attempts and Poisson flow of catastrophes is
investigated, the method of the supplementary variable is applied to find the stationary probability
distribution for the states of the system, and the time of sojourn of a customer in the system is
determined. A numerical method of computing the stationary state probabilities for a G-system
with retrials is developed in [18]. Many stationary characteristics of the M/M/1/0 system with
recurrent flow of catastrophes are determined in [18].

For the M/G/1/0 system with repeated and negative customers under the LCFS/PR discipline,
the stationary state probability distribution is determined in terms of the generating function
in [23, 24]. These results are extended to several Poisson flows of positive customers in [25].

12. NEGATIVE CUSTOMERS AND SIGNALS: AN ALTERNATIVE INTERPRETATION

In conclusion, let us once again examine the concept of a negative customer and state the
alternative interpretation for this concept in queueing theory [3].

As has been already mentioned, the concept of a negative customer was introduced comparatively
recently by Gelenbe. But queueing systems with bounded sojourn time or, which is the same thing,
systems with impatient customers (see, for example, [18]), which, in essence, are not different from
negative customers, have been known since long in queueing theory.

Indeed, let us consider negative customers that exert instantaneous action on positive customers.
We can consider an alternative service mechanism not based on the concept of a negative customer,
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but leads to the same effect for the service of ordinary customers. Let us assume that every positive
customer in the queue or at a server (or servers) quit the queueing system in time (¢,¢ + A) with
probability v, A + o(A) without completing his service, provided there were k customers in the
system at instant ¢, i.e., customers may be impatient. Then, assuming that v, = v~ /k, we find
that if there were k customers at instant ¢ in the system, then one customer quits the node in
time (t,¢ + A) with probability v~ A + o(A). This, by the assumption that negative customers
do not exert any action on the system in the absence of positive customers, is equivalent to the
effect induced on the service of positive customers by negative customers of a Poisson flow with
parameter vy~ .

Within the framework of the network model with signals (under the assumption that signals
are instantaneously activated), an impatient customer who quits node i without completing his
service, may go to node j (which is equivalent to the action of a trigger) or quit the network (which
is equivalent to the action of a negative customer) with given probabilities, which may differ from
the respective probabilities for the behavior of a served positive customer.
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